

BECRER

TFC / PCD / CBN Milling

\checkmark First choice for composites \checkmark Extreme hardness \checkmark Dramatically improved tool life \checkmark Superior surface finish \checkmark Reduced cutting pressure

TFC Features \& Benefits

- Harder, more wear resistant 2 to $10 x$ life of $P C D$
- Pure diamond (no binder) no edge erosion or chemical interaction
- Highest thermal conductivity lowest cutting temperatures
- Sharpest cutting edge
reduced cutting forces
smoother more consistent finish

Application Materials

- Silicon aluminum alloys
- Metal matrix composites
- Carbon fiber reinforced plastic
- Platinum and gold
- High temperature plastics
- Glass reinforced epoxy

Glass reinforced epoxy

Application: TCP90 Milling Cutter
Milling the face of a cast aluminum oil pan.
Material is A380 Aluminum consisting of 9% silicon.

Cutting Data:
4.00" diameter cutter ($Z=10$)

8000 RPM (through tool coolant)
213 IPM feedrate
0.040-0.080" D.O.C.

32 RMS

Part life:
$P C D=2,500$ pieces
TFC= 13,500 pieces

Ulitrahard Cutting Materials

"TFC" Thick Film CVD diamond. This outstanding new program of cutting tools from Becker has such extreme consistent hardness that its wear properties are anywhere from 2 to 10x that of PCD. This new diamond is grown in a chemical vapour deposition reactor in thicknesses of $0.5 \mathrm{~mm}-1.8 \mathrm{~mm}$ which allows for a wide variety of milling tools and insert geometries. This pure diamond has no binders which allows extreme cutting edge sharpness giving you excellent surface finishes with virtually no cutting pressure. The absence of binders at the cutting edge allows for excellent thermal conductivity which reduces heat produced at the cutting zone. The extreme sharpness and the pure diamond cutting edge of the Becker "TFC" tools avoids chemical interactions with materials or cutting fluids which eliminates
failures due to cutting edge erosion. This pure diamond maintains a sharper cutting edge far longer than that of the standard polycrystalline diamond tools. With this advancement in technology in cutting material, the technology to prepare the cutting tools has also evolved drastically. All of the "TFC" tips produced at Becker are adhered using a high vacuum brazing process that ensures excellent quality. Due to the extreme hardness, the cutting edge cannot be ground or eroded thus the Becker company has invested in High Tech lasers which not only prepare the cutting edges to the highest quality but also allows the 3D cutting edge geometries in various formations prepared in the same quality.

BECKER Designation	ISO Designation	Description	Application
Diamond Grades			
TFC	PD	Solid polycrystalline CVD-diamond iwthout binder and without carbide reinforcement, perfect cutting edge sharpness and cutting edges without any microdamage. No cutting pressure and smallest tolerances. Highest wear resistance and very high thermal conductivity (HSC and HPC), higher toughness.	From super-finishing to semifinishing of all non-ferrous metals and non-ferrous composites with high content of abrasive reinforcement or silicon.
PDC	DP Compound	Polycrystalline diamond (compound cutting material), carbide reinforced diamond of fine grit size, good cutting edge sharpness and low cutting pressure allowing for minor tolerances. Lower wear resistance at higher toughness.	Finishing of all non-ferrous metals and non-metallics with low content of abrasive reinforcement or silicon.
PDC-S	DP Compound	Polycrystalline diamond (compound cutting material), carbide reinforced diamond of coarse grit size, good edge sharpness and low cutting pressure allowing for minor tolerances. Ideal for milling. Lower wear resistance at higher toughness.	Finishing and milling of all nonferrous and non-metallics with medium content of abrasive reinforcement or silicon.
PDC-CU-S	DP Compound	Solid polycrystalline diamond (compound cutting material) without carbide reinforcement, coarse grit size, good cutting edge sharpness and low cutting cutting pressure allowing for minor tolerances. Well suited for milling tools with high depth of cut. High wear resistance at higher toughness due to large diamond volume.	Finishing and milling of all nonferrous metals and non-metallics with high content of abrasive reinforcement or silicon.

PCBN Grades

PBC-10	BH	Uncoated PcBN grade with very high CBN content (95\%) in standard design. Fine grit size (1-1.5 $)$.	Grey cast iron Super alloys Sintered powdered steel ap = .004" - .016"
PBC-15	BH	Uncoated PcBN grade with high CBN content (90\%) in standard design. Super fine grit size (0.75μ).	Nodular cast iron Sintered powdered steel Super alloys Grey cast iron ap = .002" - .016"
PBC-25	BL	Uncoated PcBN grade with low CBN content (65\%) in standard design. Fine grit size (3μ), for continuous to heavily-interrupted cut.	Hard milling, dry $\begin{aligned} & \mathrm{HRc}=52-65 \\ & \mathrm{ap}=.002-.016 " \\ & \mathrm{Ra}=0.2-3.2 \mu \end{aligned}$
PBC-40	BL	Uncoated PcBN grade with low CBN content and ultrafine grit size. Perfect wear resistance for dry hard-cutting at higher feed rates with low depth of cut. Continuous and slightly interrupted cutting.	Hardened steels (HRc 56-62) dry cutting For Ra $32 \mu \mathrm{in}-63 \mu \mathrm{in}$ ap= .002" - .012"

BECKER "TFC MillCut" End Mills

2 Flutes Square End Mill (metric dimensions)

| Designation | d^{1} | r | d^{2} | d^{3} | flutes | Axial
 Angle | $L^{L^{1}}$ | L^{2} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thickness | | | | | | | | |

2 Flutes Toroid End Mill (metric dimensions)

Designation	d^{1}	r	d^{2}	d^{3}	flutes	Axial Angle	L^{1}	L^{2}	L^{3}	TFC Thickness
BMC-T04.R05 TFC	4	0.5	6	3.5	2	0°	50	10	4.0	. 50
BMC-T05.R05 TFC	5	0.5	6	4.3	2	0°	50	12	4.7	. 50
BMC-T05.R10 TFC	5	1.0	6	4.3	2	0°	50	12	4.7	. 50
BMC-T06.R10 TFC	6	1.0	6	5.1	2	0°	57	15	5.2	. 50
BMC-T06.R15 TFC	6	1.5	6	5.1	2	0°	57	15	5.2	. 50
BMC-T08.R10 TFC	8	1.0	8	6.9	2	0°	63	20	6.1	. 75
BMC-T08.R15 TFC	8	1.5	8	6.9	2	0°	63	20	6.1	. 75
BMC-T08.R20 TFC	8	2.0	8	6.9	2	0°	63	20	6.1	. 75
BMC-T10.R10 TFC	10	1.0	10	8.5	2	0°	72	26	7.5	1.00
BMC-T10.R20 TFC	10	2.0	10	8.5	2	0°	72	26	7.5	1.00
BMC-T10.R25 TFC	10	2.5	10	8.5	2	0°	72	26	7.5	1.00
BMC-T12.R10 TFC	12	1.0	12	10.1	2	0°	83	32	8.5	1.00
BMC-T12.R30 TFC	12	3.0	12	10.1	2	0°	83	32	8.5	1.00
BMC-T12.R40 TFC	12	4.0	12	10.1	2	0°	83	32	8.5	1.00

BECKER "TFC MillCut" End Mills

2 Flutes Radius End Mill (metric dimensions)

Designation	d^{1}	r	d^{2}	d^{3}	flutes	Axial Angle	L^{1}	L2	L^{3}	TFC Thickness
BMC-R04 TFC	4	2	6	3.5	2	0°	60	20	6.0	. 50
BMC-R05 TFC	5	2.5	6	4.3	2	0°	63	25	6.0	. 50
BMC-R06 TFC	6	3	6	5.1	2	0°	63	25	6.0	. 75
BMC-R08 TFC	8	4	8	6.9	2	0°	67	30	8.0	. 75
BMC-R10 TFC	10	5	10	8.5	2	0°	77	35	10.0	1.00
BMC-R12 TFC	12	6	12	10.1	2	0°	87	40	12.0	1.00

2 Flutes Ball End Mill (metric dimensions)

Designation	d^{1}	r	d^{2}	d^{3}	flutes	Axial Angle	L^{1}	L2	L^{3}	TFC Thickness
BMC-K04 TFC	4	2-200 ${ }^{\circ}$	6	3.2	2	0°	60	20	2.5	. 50
BMC-K05 TFC	5	2.5-200 ${ }^{\circ}$	6	4.2	2	0°	63	25	3.2	. 50
BMC-K06 TFC	6	3-210 ${ }^{\circ}$	6	4.8	2	0°	63	25	3.7	. 75
BMC-K08 TFC	8	4-220 ${ }^{\circ}$	8	6.8	2	0°	67	30	5.0	. 75
BMC-K10 TFC	10	5-220 ${ }^{\circ}$	10	7.9	2	0°	77	35	6.5	1.00
BMC-K12 TFC	12	6-220 ${ }^{\circ}$	12	9.5	2	0°	87	40	7.5	1.00

700\% Increase in tool life \& 20\% faster using TFC!

Application: 10 mm Square End Mill
Trimming CFK Plates 16.5 inches long

Cutting Data:

$0.394^{\prime \prime}$ (10 mm) diameter cutter ($\mathrm{Z}=2$)
DOC: 0.394" (10mm)
WOC: 0.039" (1mm)
FPT: $0.004^{\prime \prime}(0.1 \mathrm{~mm})$

BECKER TFC:
Vc: 1220 SFM (11,830 RPM) IPM: 94.6
29 passes @ 16.5"
478.5 Linear Inches

Carbon Fiber

Competitor PCD:

Vc: 975 SFM (9453 RPM)
IPM: 75.6
4 passes @ 16.5"
66 Linear Inches

Cutting Data for Non-Ferrous Applications

Cutting Parameters		
Material	Cutting Speed	Cutting Feed (FPT)
AL <4\% Si	$1000-10000$	$.001-.008$
AL 4-8\% Si	$1000-10000$	$.001-.008$
AL 9-13\% Si	$700-10000$	$.001-.008$
AL >13\% Si	$500-7000$	$.001-.006$
Magnesium Alloys	$1000-10000$	$.001-.012$
Copper Alloys	$1000-10000$	$.001-.016$
Brass Alloys	$1000-10000$	$.001-.010$
Graphite	$1000-7000$	$.001-.008$
CFK / GFK	$500-7000$	$.001-.030$

"TFC MillCut" Tools
with Chipbreaker available upon request

TCP90-AL Milling Cutters

Aluminium face milling cutter program engineered for high speed machining of all non-ferrous materials

- New advanced milling cutter program engineered for high speed machining of non-ferrous materials
- Ultra precise finishing with unique wiper radius PCD / TFC inserts and micro-adjustable cartridges
- Milling cutter bodies made from lightweight 7075-T6 aviation grade aluminum
- Maxicool through coolant enabled for maximum chip evacuation and temperature control
- New TFC diamond grade for extreme tool life!

Engineered for High Speed Machining!

TCP90 Face Mills for PCD / TFC Milling Applications

Designation	D1	D2	H	Flutes	Insert	Cartridge	Cartridge Clamp Screw	Insert Torx Screw	Height Adj. Screw
TCP90-2000-AL	2.00	. 75	2.00	3	CPGX-32.51...	BC10X50	M5 SHBS	TCP951	HAS6823
TCP90-2500-AL	2.50	1.00	2.00	5					
TCP90-3000-AL	3.00	1.00	2.00	7					
TCP90-4000-AL	4.00	1.25	2.00	10					\square
TCP90-5000-AL	5.00	1.50	2.50	11				\square	
TCP90-6000-AL	6.00	1.50	2.50	13					
TCP90-8000-AL	8.00	2.00	2.50	16					

CPGX Milling Insert with Wiper								TFC	PDC-CU-S
	Designation	d	d^{1}	s	1	I	r	PD	DP
	CPGX-32.51PDR	. 375	. 173	. 156	. 382	. 169	. 016	\square	\square
	CPGX-32.51NWR							\square	\square
	CPGX-32.51FLW							\square	\square
	CPGX-32.515FR							\square	\square

Application: TCP90 Milling Cutter
 Milling the face of a cast aluminum oil pan.
 Material is A380 Aluminum consisting of 9\% silicon.
 Cutting Data:
 4.00" diameter cutter (Z=10)
 Part life:
 8000 RPM (through tool coolant)
 PDC-S= 2,500 pieces
 TFC $=13,500$ pieces
 213 IPM feedrate
 0.040-0.080" D.O.C.
 32 RMS

Chipbreaker Information	
PDR	Crown radius wiper. Suitable for general purpose applications with stable set-ups.
NWR	Full radius insert with no wiper facet. Suitable for unstable set-ups or thin wall parts. Excellent for sealing surfaces.
FLW	Flat wiper facet for general machining and unstable set-ups.
SFR	Very large crown radius wiper facet. Suitable for super finishing on very stable thick wall parts.

TCP90-AL Milling Cutters

TFC ... For Extreme Performance

Performance: Solid diamond with no binder. Cutting edge is extremely sharp and without microfractures generating no cutting pressure, allowing burrfree results with tolerances close to zero. Extremely flank wear resistant with maximum thermal conductivity, and good toughness.
Application: Super finishing to roughing of all nonferrous metals and nonmetallics with abrasive reinforcement or silicon. (HSC - High Tech)

PDC-CU-S

Performance: Solid polycrystalline diamond (compound cutting material) without carbide reinforcement, coarse grit size, good cutting edge sharpness and low cutting pressure allowing for minor tolerances. Well suited for milling tools with high depth of cut.
Application: Finishing and milling of all non-ferrous metals and non-metallics with high content of abrasive reinforcement or silicon.

Insert Double Lock

Secondary insert step locks against matching step on insert cartridge

Designed to act as a double lock in conjunction with the tapered insert screw

Micro Adjustable

Easily pre-set cartridges to within microns
All new milling cutters are factory pre-set in height to within ± 0.0004 with a master gauge insert

Cartridge Dovetail Lock

Insert cartridge is fitted into cutter body with dovetail design
Centrifugal forces acting on insert cartridge are neutralized by wedge profile of cartridge and matching shape on cutter body

Through Coolant Enabled

Coolant ports are directed at the cutting edge to extend tool life and improve surface finishes

Enclosed Cartridge Clamping Screw

Unique cartridge shrouds cartridge clamp screw within steel body

Potential screw breakage is contained within steel of cartridge - the screw has no place to eject

Wiper Radius

Unique wiper is a compound radius that outperforms traditional wiper flats
With every insert in the cutter loaded with the wiper radius, super finishing is easily attained

Coolant Caps

- Optional Coolant Caps available for larger cutter diameters to provide 360° direct coolant supply at the cutting edge
- Balanced by design and mounted securely to maintain constant coolant supply at maximum RPM
- Made from the same lightweight 7075-T6 aviation grade aluminum as cutter bodies for reliable long term use and service

Cutter Designation	Thru Coolant Cap Screw	Coolant Cap	Mounting Cap Screw	Lock Washer	Washer
TCP90-5000-AL	CCS-125	CTP-125	SHCS-M4	LW-M4	W-M4
TCP90-6000-AL	CCS-160	CTP-160	SHCS-M5	LW-M5	W-M5
TCP90-8000-AL	--	CTP-200	SHCS-M8	LW-M8	W-M8

When ordering Coolant Caps, Mounting Cap Screws and Washers are included. Thru Coolant Cap Screw must be purchased separately.

Materials	Conditions of Chip Removal	Application Range - Cutting SpeedN01 - N40		
N Nonferrous metals Aluminum alloys without silicon	High-Speed Milling	N01-N20 (HSC)	N20 - N30 (HSC)	N25-N40 (HSC)
		$3.2 \mu \mathrm{in}-100 \mu \mathrm{in}$	100 $\mu \mathrm{in}$ - $200 \mu \mathrm{in}$	200رin - $400 \mu \mathrm{in}$
	continuous	TFC	PDC-CU-S / TFC	PDC-CU-S / TFC
		2600-14625	2600-13000	2600-8125
	heavily + slightly interrupted	PDC-CU-S / TFC	PDC-CU-S / TFC	PDC-CU-S
		2600-14625	2600-13000	2600-8125
N Nonferrous metals Aluminum alloys with less than 12% silicon	continuous	PDC-CU-S / TFC	PDC-CU-S / TFC	PDC-CU-S / TFC
		2600-1300	2600-11375	2600-8775
	heavily + slightly interrupted	PDC-CU-S / TFC	PDC-CU-S / TFC	PDC-CU-S
		2600-13000	2600-11375	2600-8775
N Nonferrous metals Copper and copper alloys brass, bronze, precious metals	continuous	PDC-CU-S / TFC	PDC-CU-S / TFC	PDC-CU-S / TFC
		2600-9750	2600-8125	2275-7150
	heavily + slightly interrupted	PDC-CU-S / TFC	PDC-CU-S / TFC	PDC-CU-S
		2600-9750	2600-8125	2275-7150
N Non-metallics with re-inforcement (GFK/CFK/Graphite)	continuous	TFC	PDC-CU-S / TFC	PDC-CU-S
		1000-7000	700-6000	500-5000
	heavily + slightly interrupted	PDC-CU-S / TFC	PDC-CU-S / TFC	PDC-CU-S
		1000-7000	700-6000	500-5000
Coolant: Flood or through coolant \| Proper wiper radius required for application				

DiaMill-FEED Balanceable Milling Program

- Type DMFA with through coolant

- Pre-Balanced

DiaMill-FEED 90° Face \& Shoulder Milling Cutter with through coolant

Designation	$\begin{gathered} \mathrm{d}^{1} \\ \mathrm{~mm} \end{gathered}$	$\underset{\mathrm{mm}}{\mathrm{~d}^{2}}$	$\begin{gathered} \mathrm{h} \\ \mathrm{~mm} \end{gathered}$	Flutes	RPM max. $r /$ min	Milling Blades	
						face milling	shoulder milling
DMFA-63-10-28	63	22	55	10	19,000	BFMW-2805.. BFSM-2805..	$\begin{aligned} & \text { BFSM-2805.. } \\ & \text { BSM-2805.. } \end{aligned}$
DMFA-80-13-28	80	27	55	13	17,000		
DMFA-100-15-28	100	32	60	15	15,000		

Please Note: The max speeds listed are only valid if cutters are used as part of a balanced assembly

- Integral design HSK-A63 and SK-40
- Type DMFS with through coolant
- Fine-balanced G 2,5

DiaMill-FEED 90° Face \& Shoulder Milling Cutter with through coolant

Designation	$\begin{gathered} \mathrm{d}^{1} \\ \mathrm{~mm} \end{gathered}$	$\stackrel{I^{1}}{\mathrm{~mm}}$	$\begin{gathered} \mathrm{I}^{2} \\ \mathrm{~mm} \end{gathered}$	Tool holder	Flutes	RPM max. $r /$ min	Milling Blades	
							face milling	shoulder milling
DMFS-40-6-28-A	40	125	95	HSK-A63	6	24,000	BFMW-2805.. BFSM-2805..	BFSM-2805.. BSM-2805..
DMFS-50-8-28-A	50	125	95	HSK-A63	8	22,000		
DMFS-63-10-28-A	63	125	95	HSK-A63	10	19,000		
DMFS-80-13-28-A	80	130	100	HSK-A63	13	17,000		
DMFS-40-6-28-K	40	125	95	SK-40	6	24,000		
DMFS-50-8-28-K	50	125	95	SK-40	8	22,000		
DMFS-63-10-28-K	63	125	95	SK-40	10	19,000		
DMFS-80-13-28-K	80	130	100	SK-40	13	17,000		

Please Note: The max speeds listed are only valid if cutters are used as part of a balanced assembly

Spare Parts for DiaMill-FEED Milling Cutters

Clamping Wedge (M1)	Screw for Clamping Wedge (M2)	Wrench for Clamping Wedge	Adjustment Screw (M3)	Wrench for Adj. Screw	Balancing Weight for diameters... (M4)					Screw for Balancing Weight (M5)	Molykote
					$\begin{gathered} 40 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 50 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{array}{r} 63 \mathrm{~mm} \\ \hline \mathrm{gr} \\ \hline \end{array}$	$\begin{gathered} 80 \mathrm{~mm} \\ 7 \mathrm{gr} \\ \hline \end{gathered}$	$\begin{gathered} 100 \mathrm{~mm} \\ 8 \mathrm{gr} \\ \hline \end{gathered}$		
WB 17	AB 231	KEY 455	JU 220	KEY 320	RB 20040	RB 2050	RB2063	RB2080	RB20100	KEY 870	VAR 5101

[^0]
DiaMill-FEED Balanceable Milling Program

BFMW Milling Blade with wiper, for Face Milling Only

Designation	PDC-CU-S			TFC			I	1	r
	Neutral	CB1	CB2	Neutral	CB1	CB2			
BFMW-280504-3.5							22.6	3.5	0.4
BFMW-280508-3.5								3.5	0.8
BFMW-280516-3.5								3.5	1.6

$\mathrm{fz}=0.02-0.3 \mathrm{~mm} \quad \mathrm{ap}=0.07-2 \mathrm{~mm}$

BFSM Milling Blade no wiper, Face and Shoulder Milling

Designation	PDC-CU-S			TFC			I	1	r
	Neutral	CB1	CB2	Neutral	CB1	CB2			
BFSM-280504-5.5							22.6	5.5	0.4
BFSM-280508-5.5								5.5	0.8
BFSM-280516-5.5								5.5	1.6

$\mathrm{fz}=0.02-0.3 \mathrm{~mm} \quad a p=0.1-4 \mathrm{~mm}$

BSM Milling Blade no wiper, Shoulder Milling Only

Designation	PDC-CU-S			TFC			I	1	r
	Neutral	CB1	CB2	Neutral	CB1	CB2			
BSM-280504-8.0							22.6	8.0	0.4
BSM-280508-8.0								8.0	0.8
BSM-280516-8.0								8.0	1.6

$\mathrm{fz}=0.06-0.4 \mathrm{~mm} \quad \mathrm{ap}=0.25-6 \mathrm{~mm}$

Recommended Cutting Data
Turning \& Milling
Cutting Speed VC (SFM)

MaxiCool ${ }^{\text {TM }}$

These Cutters are equipped with through coolant channels

Insert Wedge Profile

The bottom seating location of the insert has a wedge shape that is clamped inwards and downwards for maximum stability and security

Wiper Radius

Proprietary compound wiper radius outperforms traditional wiper flats

Shell Mills and Integral Mills feature built-in adjustable balancing weights for accurate balancing of tools. Benefits include increased machine spindle life, and improved surface finish and tool life

Micro Adjustable

Cartridges can be easily pre-set to within microns. All new milling cutters are factory pre-set to 0.01 mm using a Master Gauge insert

Insert Wdge Clamping

Full top face clamping provides safe and secure operation in high speed machining

PCD / TFC Inserts

APKW..PDR Milling Insert Right Hand

		Designation	d	d^{1}	s	I	$\\|^{1}$	r	PD	DP		
		APKW-100302PDR						. 008				
\cdots		APKW-100304PDR	. 260	. 110	. 138	. 431	. 150	. 016				
		APKW-100308PDR						. 032				
		APKW-160404PDR						. 016				
		APKW-160408PDR						. 031				

RDHX Milling Insert Fullface									TFC	PDC	PDC-S	PDC-CU-S
		Designation	d	d^{1}	S	I	${ }^{1}$	r	PD	DP		
		RDHX-0501MO	. 197	. 079	. 059	--	--	--				
		RDHX-0702MO	. 276	. 106	. 094	--	--	--				
		RDHX-1003MO	. 394	. 150	. 125	--	--	--				
		RDHX-12T3MO	. 472	. 150	. 156	--	--	--				

SEHW..AFN Milling Insert Neutral									TFC	PDC	PDC-S	PDC-CU-S
		Designation	d	d^{1}	s	I	11	r	PD	DP		
\square		SEHW-43AFN-4	. 500	. 217	. 187	. 500	. 157	--				
		SEHW-43AFN-6					. 236	--				

SEKN..AFN Milling Insert Neutral

		Designation	d	d		s	I		「	r	
		SEKN-42AFN-4	. 50	--		. 125	. 500		. 157	-	
		SEKN-42AFN-6							. 236	-	--

TFC	PDC	PDC-S	PDC-CU-S
PD	DP		
		\square	
		\square	

XDHW / XPHW Milling Insert Right Hand									TFC	PDC	PDC-S	PDC-CU-S	
		Designation	d	d^{1}	S	I	$\\|^{1}$	r	PD	DP			
\square		XDHW-090308	. 250	. 110	1/8	. 381	. 150	. 031			-		
		XPHW-160408	. 375	. 173	3/16	. 635	. 150	. 031			\square		

Used in our TX90 Milling Program

XDHW-GS / XPF	HW-GS Full Edge Milli	Insert Right Han						TFC	PDC	PDC-S	PDC-CU-S
		Designation	d	d^{1}	S	I	r	PD		DP	
		XDHW-090308-GS	. 250	. 110	1/8	. 381	. 031				
		XPHW-160412-GS	. 375	. 173	3/16	. 635	. 047			\square	

[^1]
CBN Inserts

APKW..PDR Milling Insert Right Hand

Designation	d	d^{1}	s	I	I^{1}	r	
APKW-100302PDR					.150	.008	
		.260	.110	.138	.431		
	APKW-100304PDR					.150	.016

PBC-10	PBC-15	PBC-25	PBC-40
BH		BL	
\square		\square	
\square		\square	

RDHX Milling Insert Fullface									PBC-10	PBC-15	PBC-25	PBC-40
		Designation	d	d^{1}	S	I	$1{ }^{1}$	r	BH		BL	
		RDHX-0702MOT-VM	. 276	. 106	. 094	--	--	--	\square	-	-	
		RDHX-1003MOT-VM	. 394	. 150	. 125	--	--	--				
		RDHX-12T3MOT-VM	. 472	. 150	. 156	--	--	--	\square	\square	\square	

RNGN Milling Insert Neutral									PBC-10	PBC-15	PBC-25	PBC-40
		Designation	d	d^{1}	S	I	$1{ }^{1}$	r	BH		BL	
		RNGN-090300-E-SE	. 375	--	. 125	--	--	--				
		RNGN-090300-F-SE									\square	
+		RNGN-120400-E-SE	. 500	--	. 187	--	--	--				
		RNGN-120400-F-SE									\square	

SPKN..EDR MW Milling Insert									PBC-10	PBC-15	PBC-25	PBC-40
		Designation	d	d^{1}	S	I	${ }^{1}$	r	BH		BL	
		SPKN-42EDRT-MW	. 500	--	. 125	. 500	. 157	--	-		\square	

TPKN..PDR MW Milling Insert									PBC-10	PBC-15	PBC-25	PBC-40	
		Designation	d	d^{1}	s	I	$\\|^{1}$	r	BH		BL		
		TPKN-32PDRT-MW	. 375	--	. 125	. 650	. 157	--	\square		\square		

XDHW / XPHW Milling Insert Right Hand									PBC-10	PBC-15	PBC-25	PBC-40
		Designation	d	d^{1}	s	I	11	r	BH		BL	
		XDHW-090308	. 250	. 110	1/8	. 381	. 150	. 031				,
		XPHW-160408	. 375	. 173	3/16	. 635	. 150	. 031				

[^2]
Technical Information

 Scan here for BECKER brochures
 \& catalogs

7YSON 7001.

TYSON TOOL COMPANY LIMITED
75 ORMONT DRIVE, TORONTO, ONTARIO, M9L-2S3
TEL: (416) 746-3688~~ FAX: (416) 746-5415 INTERNET:www.tysontool.com ~~ E-MAIL: sales@tysontool.com

Available From:

[^0]: Clamping Torque for wedge: 4 Nm

[^1]: Used in our TX90 Milling Program

[^2]: Used in our TX90 Milling Program

